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Abstract
In this paper, a supersymmetric extension of the scalar Born–Infeld equation
is constructed through a superspace formalism which involves the addition
of one independent fermionic Grassmann variable to the existing bosonic
spacetime coordinates. The bosonic scalar field is replaced by a fermionic
superfield which is composed of two component fields, one bosonic and one
fermionic. The resulting equation is invariant under a space supersymmetric
transformation and, in its most general form, involves four arbitrary parameters.
For a certain specific case, the Lie superalgebra of symmetries was identified,
and the one-dimensional subalgebras were systematically classified into
splitting and non-splitting conjugate classes. A number of group-invariant
solutions were obtained, including polynomial solutions, solutions by radicals
and solitary waves (including bumps, kinks and doubly periodic solutions).

PACS numbers: 12.60.Jv, 02.20.Sv, 02.30.Jr

1. Introduction

Over the last three decades, since the discovery of supersymmetry by Golfand and Likhtman
[1], there has been a great deal of interest in the subject of supersymmetric theories in physics.
This has led to the appearance of new types of differential equations involving Grassmann
variables. At the same time, certain kinds of symmetries of these equations have been identified
which link the bosonic and fermionic Grassmann variables in a nontrivial way. These elements
have made possible the formulation of different types of supersymmetric theories to describe
a number of phenomena in both classical and quantum physics [2–12].
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1.1. Scalar Born–Infeld equation

In 1934, Born and Infeld proposed a nonlinear modification of Maxwell’s electrodynamics
theory [13]. More generally, equations derived from an action principle involving a square root
similar to that of the Born–Infeld Lagrangian are referred to as Born–Infeld type equations in
the literature on the subject [14–18]. The focus of this paper will be on the following nonlinear
differential equation involving the scalar field φ(x, t):

(1 + (φx)
2)φtt = 2φxφtφxt + (1 − (φt )

2)φxx , (1)

which will be referred to throughout as the scalar Born–Infeld (SBI) equation. This equation,
which is derived from the variational principle

δ

∫ ∫
(1 − (φt )

2 + (φx)
2)1/2 dx dt = 0, (2)

was used by Barbashov and Chernikov to formulate and solve the problem of the interaction
of two plane waves [15]. Equation (1) itself was introduced as an analogy to the equation of
minimal surfaces in Euclidean space

(1 + (φx)
2)φyy − 2φxφyφxy + (1 + (φy)

2)φxx , (3)

by setting y = it . The integral in (2) expresses the area of the surface z = φ(x, t) in the
pseudo-Euclidean space with the metric ds = dt2 − dx2 − dz2, and accordingly, equation (1)
describes the extremal surfaces in pseudo-Euclidean space [14]. The scattering problem was
solved exactly and it was found that the shape and direction of the plane waves do not change
after scattering, only their arguments [15].

It was later determined that both the scalar Born–Infeld theory and the Chaplygin gas
nonrelativistic fluid devolve from the Nambu–Goto action for a d-brane, when specific
parametrizations are made [9, 19, 20]. More specifically, the Chaplygin gas is derived
through the light-cone parametrization whereas the Born–Infeld model is obtained from the
Cartesian parametrization. This connection between the three models (Chaplygin, Born–
Infeld and Nambu–Goto) has been used extensively in the context of symmetry analysis,
conservation laws and the construction of invariant and partially invariant solutions [9, 21, 22].
Supersymmetric extensions of the Chaplygin gas model in one and two spatial dimensions
have been formulated recently by Jackiw, Bergner and Polychronakos [9–11]. The question
arises as to whether it is possible to find a supersymmetric generalization of the associated
scalar Born–Infeld equation. The construction of such a model is the main objective of
this paper.

1.2. Objectives and organization

The primary purpose of this paper is to construct a supersymmetric extension of the
scalar Born–Infeld (SBI) equation by means of a superspace and superfield formalism.
Such a superfield generalization is not always unique however. Indeed, due to the
fact that each term of the SBI equation may be the fermionic part of more than one
combination of derivatives of the superfield, the most general possible supersymmetric
extension must include linear combinations of all possible terms. For a certain choice of
linear combination, we wish to determine the Lie superalgebra LS of symmetries of the
resulting supersymmetric generalization and perform a comprehensive classification of the
one-dimensional subalgebras of LS . This classification allows us to construct group-invariant
solutions of the supersymmetric SBI system which we have constructed.

This paper is organized as follows. Section 2 describes in detail the procedure utilized to
construct the most general supersymmetric extension of the SBI equation. The Lie symmetries



Supersymmetric Born–Infeld equation 7107

of the resulting supersymmetric model are described in section 3 for both the general case
and a specific case which we describe in greater detail. For the latter, we also perform a
complete classification of the splitting and non-splitting one-dimensional subalgebras of the
symmetry Lie superalgebra. In section 4, this classification is used together with the method
of symmetry reduction in order to obtain certain classes of group-invariant solutions of our
equation. Finally, section 5 contains observations and a discussion of future perspectives.

2. Supersymmetric Born–Infeld equation

We now proceed to construct an explicit Grassmann-valued extension of the SBI equation.
We extend the space of independent variables {(x, t)} to a superspace {(x, t, θ)}, where θ is an
anticommuting Grassmann variable. The bosonic field φ(x, t) is generalized to a fermionic
superfield �(x, t, θ), which is defined as

�(x, t, θ) = ψ(x, t) + θφ(x, t), (4)

where ψ(x, t) is a new fermionic field. The new system is constructed in such a way that it is
invariant under the supersymmetry transformation

x → x − ηθ , θ → θ + η, (5)

which in turn is generated by the infinitesimal supersymmetry operator

Q = ∂θ − θ∂x . (6)

In addition to the superfield � described in (4), we introduce the covariant derivative

D = ∂θ + θ∂x . (7)

The most general form of the supersymmetric extension of (1) is given by the expression

�tt + a(D3�)2�tt + (1 − a)(D�)tt (D
2�)(D3�) = 2b(D�)t (D

3�)(D2�)t

+ 2c(D�)t (D
2�)(D3�)t + 2(1 − b − c)�t(D

3�)(D3�)t

+ D4� − d((D�)t )
2(D4� + (d − 1)�t(D�)t (D

5�). (8)

When decomposed in terms of the component fields of �, equation (8) is equivalent to
the following system of two partial differential equations for the two unknown fields φ and ψ

expressed as functions of x and t:

(1 + (φx)
2)φtt = 2φxφtφxt + (1 − (φt )

2)φxx − 2aφxψxxψtt + (1 − a)φttψxψxx

+ (1 − a)φxψxψxtt + 2(b + d)φtψxxψxt − 2cφtψxψxxt − 2cφxtψxψxt

+ 2(1 − b − c)φxψxxtψt + 2(1 − b − c)φxtψxxψt + (1 − d)φxxψtψxt

+ (1 − d)φtψtψxxx

and

ψtt + a(φx)
2ψtt + (1 − a)φxφttψx = 2bφxφtψxt + 2cφtφxtψx + 2(1 − b − c)φxφxtψt

+ ψxx − d(φt )
2ψxx + (d − 1)φtφxxψt . (9)

This pair of equations represents the supersymmetric scalar Born–Infeld (SSBI) system and
we will refer to it as such.
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3. Structure of the symmetry Lie superalgebra

The system composed of the two SSBI equations (9) possesses a number of infinitesimal
symmetries which are present in general, for all possible values of the real parameters a, b, c

and d. These include the dilation in dependent and independent variables

M = x∂x + t∂t + φ∂φ + 3
2ψ∂ψ (10)

and the translations in time t and space x as well as in the bosonic and fermionic fields φ and
ψ , respectively,

P0 = ∂t , P1 = ∂x, Z = ∂θ , Y = ∂ψ . (11)

The dilation and translations listed in (10) and (11) represent an extension of the symmetry
generators of the standard SBI equation (1). For specific values of the coefficients a, b, c and
d, certain additional symmetry generators may be present and consequently we would get a
higher dimensional Lie superalgebra. We examine such an example below.

It should be noted that the supersymmetry operator Q given in equation (6), which
connects the independent variables x and θ in the (x, t, θ) superspace can also be represented
as a generalized symmetry in (x, t, φ, ψ) coordinate space. Indeed, if η is a constant fermionic
parameter, the superfield � = ψ + θφ is transformed under the action of ηQ to

� → � + ηQ� = (ψ + ηφ) + θ(φ − ηψx), (12)

so that Q may be represented by the operator

Q̂ = −ψx∂φ + φ∂ψ . (13)

Similarly, the covariant derivative D given in equation (7) can be represented by the generalized
symmetry

D̂ = ψx∂φ + φ∂ψ . (14)

3.1. The case where a = 1, b = 1, c = 0 and d = 1

For the rest of this paper, we concentrate on the case where the parameters in equations (9)
are chosen to be a = 1, b = 1, c = 0 and d = 1, for which certain additional symmetry
generators are present. For this case, the supersymmetric extension (8) of the SBI equation in
terms of the superfield � is given by the expression

(1 − ((D�)t )
2)(D4�) + 2(D�)t (D

3�)(D2�)t − (1 + (D3�)2)�tt = 0, (15)

and the equivalent component equations (9) are now

(1 − (φt )
2)φxx + 2φxφtφxt − (1 + (φx)

2)φtt +
4φt

(1 + (φx)2)
ψxxψxt = 0

and (16)

(1 − (φt )
2)ψxx + 2φxφtψxt − (1 + (φx)

2)ψtt = 0.

Here, we have eliminated the ψtt term in the first equation of (16) by substituting the isolated
ψtt term from the second equation.

The Lie superalgebra LS of the system composed of the two equations (16) is spanned by
the seven independent vector fields:

P0 = ∂t , P1 = ∂x, Z = ∂θ , M = x∂x + t∂t + φ∂φ + 3
2ψ∂ψ,

Y = ∂ψ, Q0 = t∂ψ, Q1 = x∂ψ . (17)
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Table 1. Supercommutation table for the Lie superalgebra LS spanned by the vector fields (17).

A\B P0 P1 Z M Y Q0 Q1

P0 0 0 0 P0 0 Y 0
P1 0 0 0 P1 0 0 Y
Z 0 0 0 Z 0 0 0
M −P0 −P1 −Z 0 − 3

2 Y − 1
2 Q0 − 1

2 Q1

Y 0 0 0 3
2 Y 0 0 0

Q0 −Y 0 0 1
2 Q0 0 0 0

Q1 0 −Y 0 1
2 Q1 0 0 0

The new fermionic vector fields Q0 and Q1 correspond to fermionic transformations linking
the independent bosonic variables x and t to the fermionic field ψ :

Q0 : ψ → ψ + ηt , Q1 : ψ → ψ + ηx, (18)

where in either case η is a fermionic constant parameter. The supercommutation relations
of the superalgebra LS are given in table 1. Here, for each pair of generators of A and B,
we calculate either the commutator [A,B] = AB − BA if either A or B is bosonic, or the
anticommutator {A,B} = AB + BA if both A and B are fermionic.

3.2. Classification of the one-dimensional subalgebras

We now proceed to classify the one-dimensional subalgebras of the Lie superalgebra LS ,
using the procedures described in [23]. That is, we construct a list of representatives of
the conjugacy classes of one-dimensional subalgebras of LS in such a way that each one-
dimensional subalgebra of LS is conjugate to one and only one element of the list. We begin
by decomposing the structure of LS into the following semi-direct sum:

LS = {{M} +⊃ {P0, P1, Z}} +⊃ {Y,Q0,Q1}. (19)

Next, we apply the classification method for semi-direct sums and obtain the following results.
The one-dimensional splitting subalgebras of LS are

L1 = {M}, L2 = {P0}, L3 = {P1}, L4,m = {P1 + mP0,m �= 0},
L5 = {Z}, L6,m = {Z + mP0,m �= 0}, L7,m = {Z + mP1,m �= 0},
L8,m,n = {Z + mP0 + nP1,m, n �= 0}, L9 = {Y }, L10 = {Q0},
L11 = {Q1}, L12,k = {Q1 + kQ0, k �= 0},

(20)

and the one-dimensional non-splitting subalgebras of LS are

L(2;u,η) = {P0 + uQ0 + ηQ1}, L(3;u,η) = {P1 + uQ0 + ηQ1}
L(4,m;u,η) = {P1 + mP0 + uQ0 + ηQ1,m �= 0}, L(5;u,η) = {Z + uQ0 + ηQ1},
L(6,m;u,η) = {Z + mP0 + uQ0 + ηQ1,m �= 0},
L(7,m;u,η) = {Z + mP1 + uQ0 + ηQ1,m �= 0},
L(8,m,n;u,η) = {Z + mP0 + nP1 + uQ0 + ηQ1,m, n �= 0},

(21)

where u and η are fermionic constants. It should be noted that each subalgebra L(i;u,η) is
an element of the same conjugacy class as the subalgebra L(i,Ku,Kη), where K is a positive
constant.
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Table 2. Invariants of the one-dimensional subalgebras of LS .

Subalgebra Invariants Relations and change of variable

L1 = {D} ξ = x
t
,

φ
t
, t−3/2ψ φ = tF (ξ), ψ = t3/2	(ξ)

L2 = {P0} x, φ, ψ φ = φ(x), ψ = ψ(x)

L3 = {P1} t, φ, ψ φ = φ(t), ψ = ψ(t)

L4,m = {P1 + mP0} ξ = t − mx, φ, ψ φ = φ(ξ), ψ = ψ(ξ)

L5 = {Z} x, t, ψ N/A
L6,m = {Z + mP0} x, t − mφ,ψ φ = 1

m
(F (x) + t), ψ = ψ(x)

L7,m = {Z + mP1} t, x − mφ, ψ φ = 1
m

(F (t) + x), ψ = ψ(t)

L8,m,n = {Z + mP0 + nP1} ξ = x − n
m

t, φ − t
m

, ψ φ = F(ξ) + t
m

, ψ = ψ(ξ)

L9 = {Y } x, t, φ N/A
L10 = {Q0} x, t, φ N/A
L11 = {Q1} x, t, φ N/A
L12,k = {Q1 + kQ0} x, t, φ N/A
L(2;u,η) = {P0 + uQ0 + ηQ1} x, φ, ψ − 1

2 ut2 − ηxt φ = φ(x), ψ = 	(x) + 1
2 ut2 + ηxt

L(3;u,η) = {P1 + uQ0 + ηQ1} t, φ, ψ − uxt − 1
2 ηx2 φ = φ(t), ψ = 	(t) + uxt + 1

2 ηx2

L(4,m;u,η) = {P1 + mP0 ξ = t − mx, φ φ = φ(ξ),

+ uQ0 + ηQ1} ψ + 1
2 umx2 − 1

2 ηx2 − uxt ψ = 	(ξ) − 1
2 umx2 + 1

2 ηx2 + uxt

L(5;u,η) = {Z + uQ0 + ηQ1} x, t, ψ − (ut + ηx)φ N/A

L(6,m;u,η) = {Z + mP0 x, mφ − t, φ = 1
m

(F (x) + t),

+ uQ0 + ηQ1} ψ − 1
2m

ut2 − 1
m

ηxt ψ = 	(x) + 1
2m

ut2 + 1
m

ηxt

L(7,m;u,η) = {Z + mP1 t, mφ − x, φ = 1
m

(F (t) + x),

+ uQ0 + ηQ1} ψ − 1
m

uxt − 1
2m

ηx2 ψ = 	(t) + 1
m

uxt + 1
2m

ηx2

L(8,m,n;u,η) = {Z + mP0 + nP1 ξ = x − n
m

t, mφ − t, φ = 1
m

(F (ξ) + t),

+ uQ0 + ηQ1} ψ − 1
2m

ut2 − 1
m

ηxt + b

2m2 ηt2 ψ = 	(ξ) + 1
2m

ut2 − 1
m

ηxt + b

2m2 ηt2

The usefulness of the classification is demonstrated in the fact that it allows us to find
all corresponding reductions of the SSBI equations (16) under the classified non-equivalent
one-dimensional subalgebras of LS .

4. Group-invariant solutions

In this section, we use the classical method of symmetry reduction to determine the invariants
and reduced differential equations corresponding to each subalgebra listed in section 3.
Where it is possible, we also determine explicit solutions of the SSBI equations. Passing
systematically through the one-dimensional subalgebras of LS , we obtain for each subalgebra
a symmetry variable ξ involving the independent variables x and t. We also express the fields
φ and ψ in terms of the dependent invariants F(ξ) and 	(ξ), respectively. Substituting each
of these into equations (16), we reduce them to a system of reduced ordinary differential
equations. It should be noted that this procedure cannot be used for subalgebras whose
symmetry generators do not involve derivatives with respect to independent variables. This is
also true for the generalized symmetries (13) and (14). The results are described in tables 2
and 3.

For the subalgebra L1, the reduced equations are difficult to solve in general. However,
for the specific case where F(ξ) = ±iξ , we obtain the solution

φ(x) = ±ix, ψ(x, t) = η1xt1/2 + η2t
3/2, (22)

where η1, η2 are fermionic constant parameters.



Supersymmetric Born–Infeld equation 7111

Table 3. Reduced equations obtained from the one-dimensional subalgebras of LS . Splitting
subalgebras are denoted by Lα and non-splitting subalgebras by Lα .

Subalgebra Reduced equation(s)

L1 = {D} (F 2 + ξ2 − 1)(1 + (Fξ )
2)Fξξ = 2(ξFξ − F)	ξ	ξξ ,

(F 2 + ξ2 − 1)	ξξ − (FFξ + ξ)	ξ + 3
4 (1 + (Fξ )

2)	 = 0
L2 = {P0} φxx = 0, ψxx = 0
L3 = {P1} φtt = 0, ψtt = 0
L4,m = {P1 + mP0} (1 − m2)φξξ = 0, (1 − m2)ψξξ = 0
L6,m = {Z + mP0} (m2 − 1)Fxx = 0, (m2 − 1)ψxx = 0
L7,m = {Z + mP1} (m2 + 1)Ftt = 0, (m2 + 1)ψtt = 0
L8,m,n = {Z + mP0 + nP1} (1 − m2 + n2)Fξξ = 0, (1 − m2 + n2)ψξξ = 0
L(2;u,η) = {P0 + uQ0 + ηQ1} φxx = 0, 	xx = (1 + (φx)2)u

L(3;u,η) = {P1 + uQ0 + ηQ1} φtt = 4φtηu,	tt = (1 − (φt )
2)η

L(4,m;u,η) = {P1 + mP0 (1 + m2(φξ )
2)(1 − m2)φξξ = 4φξ (ηu − mη	ξξ ),

+ uQ0 + ηQ1} (1 − m2)	ξξ = −(mu + η)(φξ )
2 − mu + η

L(6,m;u,η) = {Z + mP0 (m2 − 1)
(

1 + 1
m2 (Fx)2

)
Fxx = 4mη	xx,

+ uQ0 + ηQ1} (m2 − 1)	xx = mu
(

1 + 1
m2 (Fx)2

)
− 2

m
ηFx

L(7,m;u,η) = {Z + mP1 (m2 + 1)2Ftt = m2ηuFt ,

+ uQ0 + ηQ1} (m2 + 1)	tt = mη + 2
m

uFt − 1
m

η(Ft )
2

L(8,m,n;u,η) = {Z + mP0 + nP1

(
1 + 1

m2 (Fξ )
2
)

n2Fξξ = (m2 − 1)Fξξ − 4mη
(
1 − n

m
Fξ

)
	ξξ ,

+ uQ0 + ηQ1} (1 − m2 + n2)	ξξ = − 1
m2 (mu + nη)(Fξ )

2 + 2
m

ηFξ + (nη − mu)

Subalgebras L2 and L3 lead to trivial linear solutions in x and t, respectively, for both the
bosonic field φ and the fermionic field ψ .

For the subalgebra L4,m, we identify two distinct cases. If m = 1 or m = −1, then the
fields φ and ψ are each found to be arbitrary functions of the symmetry variable ξ = t − mx:

φ = φ(t − mx), ψ = ψ(t − mx), where m = ±1. (23)

This solution represents a travelling wave of arbitrary profile for both the bosonic field φ and
the fermionic field ψ . In particular, if a field has compact support, then it constitutes a solitary
wave. If m �= −1, 0, 1, then the fields φ and ψ become linear functions of t − mx.

Similarly, for the subalgebra L6,m, we consider the two distinct cases. If m = 1 or
m = −1, then the function F and the field ψ are each found to be arbitrary functions of x.
Thus, the solution is

φ(x, t) = m(F(x) + t), ψ = ψ(x), where m = ±1. (24)

The nature of the solution thus depends upon the properties of the function F. If m �= −1, 0, 1,
then we obtain the travelling wave solution

φ(x, t) = 1

m
(t + C1x + C2), ψ(x) = η1x + η2, (25)

where C1, C2 are bosonic and η1, η2 are fermionic.
The subalgebra L7,m leads to a solution similar to that found in (25).
For the subalgebra L8,m,n, we distinguish two cases. If m2 − n2 = 1, then the solution

depends on two arbitrary functions of the symmetry variable ξ = x − n
m

t :

φ(x, t) = F
(
x − n

m
t
)

+
t

m
, ψ = ψ

(
x − n

m
t
)

. (26)
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The character of the solution therefore depends on the nature of the functions F and ψ . Among
the physically interesting possibilities are bumps, kinks and doubly periodic solutions. For
instance, the functions F(ξ) = ψ(ξ) = arctan(ξ) correspond in fixed time to kink solutions
for both fields. It should be noted that, since the energy of the function increases with time, it
will tend to become infinite. This problem can be avoided for certain functions by setting an
appropriate bound on the time. If m2 − n2 �= 1, then the solution is

φ(x, t) = C1

(
x − n

m
t
)

+ C2 +
t

m
, ψ(x, t) = η1

(
x − n

m
t
)

+ η2, (27)

where C1, C2 are bosonic and η1, η2 are fermionic.
The subalgebra L(2;u,η) leads to the following solution, which is quadratic for ψ :

φ(x) = C1x + C2, ψ(x, t) = 1
2

(
1 + C2

1

)
ux2 + ηxt + 1

2ut2 + η1x + η2, (28)

where C1, C2 are bosonic and η1, η2 are fermionic.
Let us now consider the subalgebra L(3;u,η). The reduced equation for φ, given by

φtt = 4φtηu, (29)

can be integrated once to give the formula

φt = K0 e4ηut , (30)

where K0 is a bosonic constant. In the case where ηu = 0, we obtain the quadratic solution

φ(t) = K0t + K1, ψ(x, t) = 1
2

(
1 − K2

0

)
ηt2 + uxt + 1

2ηx2 + η1x + η2, (31)

where K1,K2 are bosonic and η1, η2 are fermionic. For the case ηu �= 0, the only possible
solution for φ would be

φ(t) = K0

4ηu
e4ηut + K1, (32)

where K1 is bosonic. However, the second reduced equation

	tt = (1 − (φt )
2)η (33)

would require us to integrate an exponential similar to that in equation (30) twice, which would
lead to a factor of (ηu)2 = 0 in the denominator of the expression for 	. Therefore, such a
solution does not exist in this case.

For the subalgebra L(4,m;u,η), we consider a number of cases. If m = 1 or m = −1, then
the reduced equations from table 3 read

(1) 4φξ (ηu − mη	ξξ ) = 0 and (2) (mu + η)(φξ )
2 + mu − η = 0. (34)

The first equation (1) imposes the requirement that either φξ = 0, η = 0 or 	ξξ = u. In the
first instance, the field φ is simply a bosonic constant while 	 is an arbitrary function of ξ .
The case where η = 0 leads to the travelling wave solution φ(x, t) = ±i(t −mx) + K0, where
again 	 is an arbitrary function of ξ . If 	ξξ = u, we obtain the quadratic solution

φ(x, t) = K1(t − mx) + K0,

ψ(x, t) = 1

2m
u(t − mx)2 − 1

2
mux2 + uxt +

1

2
ηx2 + η1(t − mx) + η2, (35)

where K0,K1 are bosonic parameters which must obey the relation K2
1 (η+mu) = η−mu and

η1, η2 are fermionic. For the case where m �= −1, 0, 1, we obtain a situation similar to that
for subalgebra L(3;u,η) above. Solving the second reduced equation for 	ξξ and substituting
this factor into the first reduced equation, we obtain the following equation for φξ :

(1 − m2)2φξξ = 4φξηu, (36)
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which is solved by an exponential involving the factor ηu. Once again, since we cannot
integrate twice, a solution does not exist.

Let us consider the subalgebra L(6,m;u,η). For the case where m = ±1, we obtain the
solution

φ(x) = 1

m
(t + C1x + C0), ψ(x) = 1

2m
ut2 +

1

m
ηxt + η1x + η2, (37)

where C0, C1 are bosonic parameters which must obey the relation u
(
1 + C2

1

) − 2ηC1 = 0
and η1, η2 are fermionic. The case m �= −1, 0, 1 leads us to the quadratic solution

φ(x) = 1

m

(
t +

2m2ηu

m2 − 1
x2 + K1x + K0

)
,

ψ(x) = 1

2m(m2 − 1)

(
m2u + K2

1 u − 2K1η
)
x2 +

1

m
ηxt +

1

2m
ut2 + η1x + η2,

(38)

where K0,K1 are bosonic constant parameters and η1, η2 are fermionic constant parameters.
For subalgebras L(7,m;u,η) and L(8,m,n;u,η), the reduced equations lead once again to

exponentials involving ηu which must be integrated twice. Therefore, we do not obtain
solutions for these cases.

5. Summary and concluding remarks

The main purpose of this paper has been to construct a supersymmetric generalization of the
scalar Born–Infeld equation using a superspace formalism which involves one independent
fermionic variable θ in addition to the bosonic spacetime coordinates in (1 + 1) dimensions.
The extension was formulated in terms of a superfield � composed of two component
fields: the original bosonic field φ and an additional fermionic field ψ . In its most general
form, the extension constitutes a four-parameter family of supersymmetric equations involving
the superfield � and its covariant and time derivatives. When split into its bosonic and
fermionic components, this covariant equation is in turn equivalent to a system of two partial
differential equations each involving the four parameters (a, b, c, d). For the case where
a = 1, b = 1, c = 0 and d = 1, the symmetry Lie superalgebra LS was found to be
larger than for the general case. The one-dimensional subalgebras of LS were classified
systematically into conjugate classes, and a number of group-invariant solutions for this case
of the SSBI equation have been obtained. These solutions include

(1) solutions which are polynomial functions of x and t for both φ and ψ ;
(2) algebraic solutions expressed in terms of radicals;
(3) solutions expressed in terms of arbitrary functions of the symmetry variable.

In particular, a number of physically interesting solutions were found, including bumps, kinks
and doubly periodic solutions. The polynomial solutions have infinite energy when they are
considered to be functions on the entire space. However, they could be rendered physically
meaningful by the imposition of boundary conditions.

The analysis described in this paper could be extended in several directions. First, we
could extend our classification of the symmetry Lie superalgebra LS so as to include two-
dimensional subalgebras of LS , which would allow us to seek for partially invariant solutions.
This approach has been very successful in the search for more diverse classes of solutions
[21, 22]. Second, we may consider using the method of conditional symmetries, which would
include a search for multiple wave solutions expressed in terms of Riemann invariants. We
could also attempt to generalize our analysis to that of solutions involving weak transversality



7114 A J Hariton

[24]. Finally, it may be noted that so far we have only explored in detail a specific case of the
SSBI equation. Different values for the parameters a, b, c and d in the general form of the
equations could be considered. These areas will constitute the subjects of future works.
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